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A main issue in machine learning research is to analyze the generalization performance
of a learning machine. Most classical results on the generalization performance of reg-
ularization algorithms are derived merely with the complexity of hypothesis space or
the stability property of a learning algorithm. However, in practical applications, the
performance of a learning algorithm is not actually affected only by an unitary factor
just like the complexity of hypothesis space, stability of the algorithm and data quality.
Therefore, in this paper, we develop a framework of evaluating the generalization per-
formance of regularization algorithms combinatively in terms of hypothesis space com-
plexity, algorithmic stability and data quality. We establish new bounds on the learning
rate of regularization algorithms based on the measure of uniform stability and empirical
covering number for general type of loss functions. As applications of the generic results,
we evaluate the learning rates of support vector machines and regularization networks,
and propose a new strategy for regularization parameter setting.
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1. Introduction

Recently there has been a great increase in the interest for theoretical issues in the
machine learning community, mainly due to the fact that statistical learning theory
has demonstrated its usefulness by providing the ground of developing successful
and well-founded learning algorithms such as support vector machines (SVMs).23

This renewed interest for theory naturally boosted the development of performance
bounds for learning machines.2,3,7,8,17,20,24 Until recently, three main approaches
have been proposed to study the generalization performance of a learning machine.

The first approach is based on the theory of uniform convergence of empirical
risks to their expected risks.2,3,23 The scholars utilize the measure of space complex-
ity, for instance, the VC-dimension,23 covering number,7,8,18,24,27,28 Vγ-dimension
and Pγ-dimension,12 Rademarcher average4 to estimate the upper bound of the
difference between empirical risks and their expect risks. For example, Vapnik23

first established the bounds of the rate of uniform convergence and on the rela-
tive uniform convergence for a set of loss functions based on VC-dimension, and
then obtained the generalization bounds of ERM algorithms. Cucker and Smale8

considered the least squares error through decomposing the error into the sample
error and the approximation error, then obtained the generalization bound in terms
of covering number of hypothesis space. Bousquet3 applied Rademarcher average
to establish the generalization bounds of ERM algorithms. However, all of these
results are merely in terms of the complexity of hypothesis space, in other words,
the obtained bounds for a learning algorithm are the same, even when different
training samples are used.

The second approach is based on sensitivity analysis. The basic point of view is
that for a good learning algorithm, the outputs of the algorithm should not have
significant disturbance when the training set has a little change. According to this
viewpoint, Devroye,11 Bousquet,5 Kutin and Niyogi15 introduced various defini-
tions of algorithmic stability, and then they obtained the generalization bounds
of learning algorithms in terms of the measures of algorithmic stability, such as,
uniform stability, error stability, and hypothesis stability. All of these results are
independent of the complexity of hypothesis space, that is, how the hypothesis
space influences the learning ability of a learning algorithm is totally ignored.

The third approach is based on the information of data, that is, the information
of training samples. The basic point is that the performance of an algorithm is
affected by randomness of input samples. To estimate the algorithmic performance,
Bousquet,3 Koltchinskii and Panchenko16 used Rademarcher average (contains the
samples information) and empirical covering number23,19 (contains the samples
information and the hypothesis space information) to obtain the generalization
bound of learning algorithms.

It is our point of view that, in real application of machine learning, the perfor-
mance of a learning algorithm is affected not only by the complexity of hypothe-
sis space, stability of learning algorithm and data information, but by some other
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factors like sampling mechanism and sample quality as well. More importantly, how
those factors determine the performance of a learning algorithm is by no means in
an independent and separate manner. It should be a consequence of synthesized
and simultaneous action of all the involved factors. From this point of view, a
more reasonable evaluation for performance of a learning algorithm should be con-
sequence of such synthesized influence of all the factors. Therefore, in this paper
we derive generalization bounds of regularization algorithms through combinatively
using the measures of hypothesis space complexity, algorithmic stability and data
quality. We will show that the obtained new generalization bounds generalize the
previously known results5,8 derived respectively from the space complexity and the
algorithmic stability, and sharpen them in certain situations.

The paper is organized as follows: In Sec. 2, we will introduce the necessary
notion and notations, and present several useful inequality tools. In Sec. 3, the
bounds of the sample error will be developed in terms of uniform stability of the
algorithm and empirical covering number. In Secs. 4 and 5, we will use the tool of
K-functional theorems, and drive the bounds on the learning performance of regu-
larization algorithms, particularly, the regularization networks and support vector
machines. Finally, we conclude the paper with some useful remarks in Sec. 6.

2. Preliminaries

In this section we introduce the definitions and notations used throughout the
paper.

2.1. Notion and notations

Let (X , d ) be a compact metric space and Y is a subset of R. Suppose that ρ is a
fixed but unknown probability distribution on Z = X × Y. We consider a training
sample set

z = {z1 = (x1, y1), z2 = (x2, y2), . . . , zm = (xm, ym)}
of size m in Z = X × Y drawn independent and identically distributed (i.i.d.)
from the unknown distribution ρ. For the training sample set z, we build, for all
i = 1, 2, . . . , m, a series of modified (change-one) sample sets as follows: replace the
ith element of the samples set z by

zi = {z1, . . . , zi−1, z
′
i, zi+1, . . . , zm},

where the sample z′i is assumed to be drawn from Z according to the distribution
ρ and independent from z.

The goal of machine learning from the samples set z is to find a function f :
X → Y such that when new unlabeled samples are given, the function f can forecast
them reasonably. Let

E(f) = Ez[�(f, z)] =
∫
Z

�(f, z)dρ
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be the expected risk (or error) of function f , where �(f, z) is a non-negative loss
function. In the past research,21 the margin-based loss functions such as the hinge
loss, the AdaBoost loss, the logistic loss and the least square loss are widely used in
classification applications, and the distance-based loss functions such as the least
squares loss, Huber’s insensitive loss, the logistic loss, and the ε-insensitive loss are
frequently adopted in regression applications. Our aim in the present paper is to
discuss the general learning problems, so we will consider general forms of the loss
functions �(f, z) below.

The learning problem is thus to find a function from a hypothesis space based on
the training set z so as to minimize the expected risk E(f). Since the distribution ρ

is unknown and we only know the samples set z, the minimizer of the expected risk
cannot be directly computed. The Empirical Risk Minimization (ERM) principle23

then advocate that instead of minimizing the expected risk, an approximate solu-
tion is found through minimizing the so-called empirical risk (or empirical error)
defined by

Em(f) =
1
m

m∑
i=1

�(f, zi),

which is directly computable due to its free from the unknown distribution ρ for
any given function f . To find the desired function by the ERM principle based on
the training set z, the most natural way is to restrict it to a hypothesis space H.
In general, the learning problem can be formulated as finding the minimizer of the
expected risk over a hypothesis space H. The problem is ill-posed in general, so a
natural way for dealing with the problem is to use the regularization technique.6,22

The classical regularization theory, as we will consider here, formulates the problem
as a variational problem of finding the function f that minimizes the functional

Rm(f) := Em(f) + λ‖f‖2
K ,

where λ is a real positive number, called the regularization parameter, and ‖ · ‖K

is a norm in a Reproducing Kernel Hilbert Space1 (RKHS) H which is defined by
a positive semidefinite function K.

Assume K :X × X → R is a continuous, symmetric and positive semidefinite
function, that is, for any finite set of distinct points {x1, x2, . . . , xl} ⊂ X , the
matrix (K(xi, xj))l

i,j=1 is positive semidefinite. Such a function is called a Mercer
kernel. The RKHS H associated with the kernel K is defined as the linear span of the
set of functions {Kx = K(x, ·) : ∀x ∈ X} with the inner product 〈, 〉H = 〈, 〉K satis-
fying 〈Kx, Ky〉K = K(x, y), that is, 〈∑i αiKxi,

∑
j βjKyj 〉K =

∑
i,j αiβjK(xi, yj).

The reproducing property takes the form

〈Kx, f〉 = f(x), ∀x ∈ X , f ∈ H
which then implies that for any f ∈ H, ‖f‖∞ ≤ κ‖f‖K, where

κ = sup
x∈X

√
K(x, x). (2.1)
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Let fρ be a function minimizing the risk E(f) over all measurable functions, i.e.

fρ = arg min
f

E(f) = arg min
f

∫
Z

�(f, z)dρ. (2.2)

We denote by fz the function minimizing the regularization empirical risk Rm(f)
over the RKHS H, i.e.

fz = arg min
f∈H

Rm(f) = arg min
f∈H

{Em(f) + λ‖f‖2
K}. (2.3)

Then we consider the function fz as an approximation of the target function fρ.
The crucial problem is how small the difference E(fz) − E(fρ). We will study this
problem in the present paper.

To estimate the difference E(fz) − E(fρ), we need some basic assumptions on
the hypothesis space H and the loss function �(f, z):

(i) We suppose that H is contained in a ball BR = {f ∈ H : ‖f‖K ≤ R, R > 0} of
a RKHS with a C∞ Mercer kernel on a compact subset of an Euclidean space
R

d. The interested reader can consult Ref. 29 for various concrete examples of
the hypothesis space H. This assumption implies that there exists a constant
Ch independent of h > d, η > 0 such that (Ref. 29)

N (H, η) ≤ exp
{

RCh

η

}2d
h

. (2.4)

(ii) We denote H′ = H∪ {fρ}, and define

B = sup
f∈H′

max
z∈Z

�(f, z), L = sup
g1,g2∈H′,g1 �=g2

max
z∈Z

|�(g1, z) − �(g2, z)|
|g1 − g2| .

We assume that B and L are both finite in this paper.

2.2. Main tools

In this subsection we introduce the notion of uniform stability and some useful
inequality tools. Let fzi be a function minimizing the (change-one) empirical risk
defined by the change-one sample set zi, 1 ≤ i ≤ m over H, i.e.

fzi = arg min
f∈H

 1
m

m∑
j=1

�(f, zj) + λ‖f‖2
K

, zj ∈ zi. (2.5)

Such fzi (also fH, fz) exists since H is compact by the assumption (i).

Definition 1. 5 The regularization algorithm (2.3) is said to be uniform stable with
respect to the loss function �(f, z), if there is a non-negative constant βm (where
m is the size of sample set z) such that

∀ z ∈ Z, ∀ i ∈ {1, 2, . . . , m}, ‖�(fz, z) − �(fzi , z)‖∞ ≤ βm. (2.6)

In this case, we say that the algorithm is βm-uniform stable.



July 11, 2011 15:47 WSPC/S0219-6913 181-IJWMIP
S0219691311004213

554 X. Chang et al.

Remark 1. The quantity βm measures the uniform stability extent of the learning
algorithm, and it is normally assumed to be a function of 1/m with the property
that βm → 0 as m → ∞.5

Note that the minimization (2.3) is taken over the discrete quantity Em(f), so,
intuitively, we have to regulate the capacity of the function set H. Here the capacity
will be measured by the covering number and the empirical covering number in this
paper.

Definition 2. 10 For a compact set H in a metric space and η > 0, the covering
number N (H, η) of the function class H is the minimal integer k ∈ N such that
there exist k balls in H with radius η covering H.

Definition 3.19,23 Let H be a class of bounded functions defined on X , and let

x = (xi)m
i=1 ∈ Xm, H|x = {(f(xi))m

i=1 : f ∈ H} ⊂ R
m.

For 1 ≤ p ≤ ∞, we define the p-norm empirical covering number of H by

Np,x(H, ε) = N (H|x, ε, dp),

Np(H, ε, m) = sup
x∈Xm

Np,x(H, ε),

Np(H, ε) = sup
m∈N+

Np,x(H, ε),

where dp(r1, r2) = ( 1
m

∑m
i=1 |r1i − r2i|p) 1

p is the �p-metric on the Euclidean space
R

m for all r1 = (r1i)m
i=1, r2 = (r2i)m

i=1 ∈ R
m.

Remark 2. The empirical covering number is a very important quantity which
simultaneously contains the information of hypothesis space and training samples.
The interested reader can consult Ref. 19 for the details.

To estimate the bound on learning performance of the regularization algorithm,
we will use the following three useful inequalities. The first one is the classical
Bernstein’s inequality,8 the second one is the inequality due to Cucker and Smale,9

and the third one is the inequality developed by Wu, Ying and Zhou25 with the
square loss function.

Lemma 1.8 Let ξ be a random variable on a space Z with expectation µ = E(ξ).
If |ξ(z)−µ| ≤ M1 for almost all z ∈ Z, and the variance σ2(ξ) = σ2 is known, then
for all ε > 0,

Probzm

{∣∣∣∣∣ 1
m

m∑
i=1

ξ(zi) − µ

∣∣∣∣∣ ≥ ε

}
≤ 2 exp

{ −mε2

2(σ2 + M1ε/3)

}
.

Lemma 2.9 Let c1, c2 > 0, and s > q > 0. Then the equation

xs − c1x
q − c2 = 0
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has a unique positive zero x∗. In addition

x∗ ≤ max{(2c1)1/(s−q), (2c2)(1/s)}.
Lemma 3.25 Let fz defined by (2.3). Then for any f ∈ H, there holds

E(fz) − E(fρ) ≤ {E(f) − E(fρ) + λ‖f‖2
K}

+ {E(fz) − Em(fz) + Em(f) − E(f)}. (2.7)

The first term in the right-hand side of (2.7) is called the regularization error,
and the second term is called the sample error. Based on this estimation, to bound
the difference E(fz)−E(fρ), we have to first bound the regularization error and the
sample error respectively. These will be done respectively in Secs. 3 and 4.

3. Bounds of Sample Error

In this section, we present an upper bound estimation on the sample error of regu-
larization algorithms based on uniform stability, complexity of hypothesis and data
quality. For this purpose, we first establish two new concentration inequalities.

Theorem 1. Suppose that the regularization algorithm (2.3) is βm-uniform stable
with respect to the loss function �(f, z), then for any ε > 0,

Probzm{E(fz) − Em(fz) ≥ 2ε + 2βm} ≤ 2N1

(
ε

4
,H, m

)
exp

{−mε2

8B2

}
.

Proof. Let Lz(f) = E(f) − Em(f). By (2.5) and (2.6), we have that for all i ∈
{1, 2, . . . , m}

|Lz(fz) − Lz(fzi)| = |E(fz) − Em(fz) − [E(fzi) − Em(fzi)]|
≤ |E(fz) − E(fzi )| + |Em(fzi) − Em(fz)|

≤
∫
Z
|�(fz, z) − �(fzi , z)|dρ +

1
m

m∑
j=1

|�(fz, zj) − �(fzi , zj)|

≤ 2βm.

So we have |Lz(fz)| ≤ 2βm + |Lz(fzi)|.
Assume that for all i ∈ {1, 2, . . . , m}, sup1≤i≤m |Lz(fzi)| ≤ 2ε. Then we get

|Lz(fz)| ≤ 2βm + 2ε. It follows that

Probzm

{
sup

1≤i≤m
|Lz(fzi)| ≤ 2ε

}
≤ Probzm{|Lz(fz)| ≤ 2βm + 2ε}.

Thus

Probzm{|Lz(fz)| ≥ 2βm + 2ε} ≤ Probzm

{
sup

1≤i≤m
|Lz(fzi)| ≥ 2ε

}

≤ Probzm

{
sup
f∈H

|Lz(f)| ≥ 2ε

}
. (3.1)
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In addition, by Theorem 17.7 in Ref. 19, we have that for the above ε,

Probzm

{
sup
f∈H

|Lz(f)| ≤ 2ε

}
≥ 1 − 4N1

(
ε

4
,H, m

)
exp

{−mε2

8B2

}
. (3.2)

By inequalities (3.1) and (3.2), we get

Probzm{|E(fz) − Em(fz)| ≤ 2ε + 2βm} ≥ 1 − 4N1

(
ε

4
,H, m

)
exp

{−mε2

8B2

}
.

This implies Theorem 1.

Remark 3. In the classical statistical learning literature,23 the quantity E(fz) −
Em(fz) is called the generalization error of the function fz. Vapnik,23 Bousquet,5

Cucker and Smale8 have made some upper bound estimations on the generaliza-
tion error respectively in terms of VC-dimension, algorithmic stability and covering
number. They have, however, only considered the effect of each respective measure.
Differently from those in Refs. 5, 8 and 23, Theorem 1 here gives the bound of
generalization error simultaneously through algorithmic stability and the empiri-
cal covering number which contains the information of space complexity and data
quality.

However, it should be noted that to estimate the empirical covering number
is very difficult in general, so we present another estimation based on using the
covering number with uniform metric below.

Theorem 2. Assume that the regularization learning algorithm (2.3) is βm-
uniform stable with respect to the loss function �(f, z), and the variance D[�(f, z)] ≤
σ2 for any f ∈ H and z ∈ Z. Then for any δ ∈ (0, 1], the inequality

E(fz) ≤ Em(fz) + ε(m, δ) + 2βm

holds with confidence at least 1 − δ provided that

m ≥ max

{
4 ln(1/δ)(σ2 + B2/3)

B2
,
4(σ2 + B2/3)(2LRCh)

2d
h

B
2h+2d

h

}
,

where

ε(m, δ) ≤ 2 max

{[
4 ln(1/δ)(σ2 + B2/3)

m

]1
2

,

[
4(σ2 + B2/3)(2LRCh)

2d
h

m

] h
2d+2h

}
.

Proof. We split the proof into three steps.

Step 1. By inequality (3.1), we get that for any ε > 0,

Probzm{|Lz(fz)| ≥ 2βm + 2ε} ≤ Probzm

{
sup
f∈H

|Lz(f)| ≥ 2ε

}
. (3.3)
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Now we bound the term of the right-hand side of inequality (3.3). Indeed,

Probzm

{
sup
f∈H

|Lz(f)| ≥ 2ε

}
= Probzm

{
sup
f∈H

|E(f) − Em(f)| ≥ 2ε

}
.

Let H = H1∪H2∪· · ·∪Hn. A same argument with that conducted in Ref. 8, shows
that for any ε > 0, whenever

sup
f∈H

|E(f) − Em(f)| ≥ 2ε,

there exists k, 1 ≤ k ≤ n, such that

sup
f∈Hk

|E(f) − Em(f)| ≥ 2ε.

This implies the equivalence

sup
f∈H

|E(f) − Em(f)| ≥ 2ε ⇔ ∃ k, 1 ≤ k ≤ n, s.t. sup
f∈Hk

|E(f) − Em(f)| ≥ 2ε.

(3.4)

By equivalence (3.4), and by the fact that the probability of a union of events is
bounded by the sum of the probabilities of these events, we obtain

Probzm

{
sup
f∈H

|E(f) − Em(f)| ≥ 2ε

}
≤

n∑
k=1

Probzm

{
sup

f∈Hk

|E(f) − Em(f)| ≥ 2ε

}
.

(3.5)

Step 2. We estimate the term of the right-hand side of inequality (3.5). Let the
balls Dk, k ∈ {1, 2, . . . , n}, be a cover of H with center at fk and radius ε

2L . Then,
for all z ∈ Zm and all f ∈ Dk,

|Lz(f) − Lz(fk)| ≤ |E(f) − E(fk)| + |Em(f) − Em(fk)|

≤ |Ez[�(f, z)] − Ez[�(fk, z)]| +
∣∣∣∣∣ 1
m

m∑
i=1

�(f, zi) − 1
m

m∑
i=1

�(fk, zi)

∣∣∣∣∣
≤ 2‖�(f, z)− �(fk, z)‖∞
≤ 2L · ‖f − fk‖∞ ≤ 2L · ε

2L
= ε.

This then implies that for any z ∈ Zm and all f ∈ Dk

sup
f∈Dk

|Lz(f)| ≥ 2ε ⇒ |Lz(fk)| ≥ ε.

We thus conclude that for any k ∈ {1, 2, . . . , n},

Probzm

{
sup

f∈Dk

|Lz(f)| ≥ 2ε

}
≤ Probzm

{
|Lz(fk)| ≥ ε

}
.
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By Lemma 1, we have that for any ε > 0,

Probzm

{
sup

f∈Dk

|Lz(f)| ≥ 2ε

}
≤ 2 exp

{ −mε2

2(σ2 + Bε/3)

}
. (3.6)

From inequalities (3.5) and (3.6), we thus obtain

Probzm

{
sup
f∈H

|E(f) − Em(f)| ≥ 2ε

}
≤ 2N

(
H,

ε

2L

)
exp

{ −mε2

2(σ2 + Bε/3)

}
. (3.7)

Combining inequalities (3.1) and (3.7) shows that for all ε > 0,

Probzm{|E(fz) − Em(fz)| ≥ 2βm + 2ε} ≤ 2N
(
H,

ε

2L

)
exp

{ −mε2

2(σ2 + Bε/3)

}
. (3.8)

Step 3. We suppose 0 < ε < B. Then the exponential part in the right-hand side
of inequality (3.8) becomes

−mε2

2(σ2 + Bε/3)
≤ −mε2

2(σ2 + B2/3)
.

By assumption (2.4), we have that for any ε > 0

Probzm{|E(fz) − Em(fz)| ≥ 2βm + 2ε}

≤ 2 exp
{(

ε

2LRCh

)−2d
h

− mε2

2(σ2 + B2/3)

}
. (3.9)

Let us rewrite inequality (3.9) in an equivalent form. Write

δ = exp
{(

ε

2LRCh

)−2d
h

− mε2

2(σ2 + B2/3)

}
.

Then 0 < δ ≤ 1 and it follows that

ε(2+ 2d
h ) − ε

2d
h · 2 ln(1/δ)(σ2 + B2/3)

m
− 2(σ2 + B2/3)(2LRCh)

2d
h

m
= 0.

By Lemma 2, we can find that the solution of above equation with respect to ε is
given by

ε
.= ε(m, δ) ≤ max

{[
4 ln(1/δ)(σ2 + B2/3)

m

]1
2

,

[
4(σ2 + B2/3)(2LRCh)

2d
h

m

] h
2d+2h

}
.

In addition, if

m ≥ max

{
4 ln(1/δ)(σ2 + B2/3)

B2
,
4(σ2 + B2/3)(2LRCh)

2d
h

B
2h+2d

h

}
we have ε < B. Thus by inequality (3.9), the proof of Theorem 2 is completed.

Remark 4. The generalization bound provided in Theorem 2 is simultaneously
through algorithmic stability and covering number with uniform metric. Different
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from Theorem 1, the data information is not involved in the bound, however, as an
outcome, the derived bound is computationally tractable.

Theorem 2 immediately implies the following bound on the sample error:

Proposition 1. For any δ ∈ (0, 1/2], the inequality

E(fz) − Em(fz) + Em(f) − E(f) ≤ ε(m, δ) + 2βm +
[
2 ln(1/δ)(σ2 + B2/3)

m

]1
2

holds with probability at least 1 − 2δ provided that

m ≥ max

{
4 ln(1/δ)(σ2 + B2/3)

B2
,
4(σ2 + B2/3)(2LRCh)

2d
h

B
2h+2d

h

}
.

Here

ε(m, δ) ≤ max

{ [
4 ln(1/δ)(σ2 + B2/3)

m

]1
2

,

[
4(σ2 + B2/3)(2LRCh)

2d
h

m

] h
2d+2h

}
.

Proof. By Lemma 1, we have that for any ε > 0,

Probzm{|Lz(f)| ≥ ε} ≤ 2 exp
{ −mε2

2(σ2 + Bε/3)

}
.

So,

Probzm{E(f) − Em(f) ≥ ε} ≤ exp
{ −mε2

2(σ2 + Bε/3)

}
.

Let us suppose ε < B. Then for any δ ∈ (0, 1/2], let δ = exp{ −mε2

2(σ2+B2/3)}, we have

ε′(m, δ) =
[
2 ln(1/δ)(σ2 + B2/3)

m

] 1
2

.

Therefore, we conclude that for any δ ∈ (0, 1/2], with confidence at least 1− δ, the
inequality

E(f) − Em(f) ≤ ε′(m, δ) (3.10)

holds as long as m ≥ 2 ln(1/δ)(σ2+B2/3)
B2 . In addition, by Theorem 2, we also have

that for the same δ, the inequality

E(fz) − Em(fz) ≤ ε(m, δ) + 2βm (3.11)

holds with probability at least 1 − δ provided

m ≥ max

{
4 ln(1/δ)(σ2 + B2/3)

B2
,
4(σ2 + B2/3)(2LRCh)

2d
h

B
2h+2d

h

}
.

Combining inequalities (3.10) and (3.11), we then complete the proof of
Proposition (3).
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In application (particularly, when it is specialized to concrete regularization
algorithms), the parameters L, B appeared in Theorem 1, Theorem 2 and Propo-
sition 1 have to be specified. While if the problem is given, parameter R usually
is constant, that is hypothesis space is given (Ch is constant). The specification of
those parameters depends tightly upon the form of loose function and the hypothesis
space. As a preparation of application, we below give some remarks on specification
of those parameters. The parameter L, as introduced in the basic assumption (ii)
of Sec. 2, is a Lipschitz constant of loss function � : H×Z → R

+. To have a reason-
able estimation on L, we first notice that, viewed as an unitary function, the loss
function � is convex whenever the basic assumption (ii) is met. This implies that

L = sup
g1,g2∈H,g1 �=g2

max
z∈Z

|�(g1, z) − �(g2, z)|
|g1 − g2|

is well defined and finite. Assume Y = [0, b] is the range of the learning machine.
Normally it is assumed that for any y ∈ Y, if f(x) = 0 then �(f, y) ≤ C0, we also
note �(0, y) ≤ C0.

In what follows, we will mainly consider the square loss function �(f, y) =
(f(x)−y)2, the absolute value loss function �(f, y) = |f(x)−y|, and the ε-insensitive
loss function �(f, y) = |f(x) − y|ε for regression application. And we consider
the square loss function �(f, y) = (1 − yf(x))2, the hinge loss function �(f, y) =
max{1−yf(x), 0} = |1−yf(x)|+, and the logistic loss function �(f, y) = ln(1+e−yf(x))

ln 2

for classification. In those cases, the assumption �(0, y) ≤ C0(∀ y ∈ [0, b]) immedi-
ately implies

|�(f, y) − �(0, y)| ≤ L|f(x)|, ∀ f ∈ H, ∀ (x, y) ∈ Z
and |�(f, y)| ≤ Lb + |�(0, y)| ≤ Lb + C0 := B. But this bound can be further
improved in regression cases. We can calculate all the parameters, L, C0, and B, as
shown in Table 1.

Remark 5. In order to show significances and values of Theorems 1 and 2, we
compare the results in Theorems 1 and 2 with the previously known fundamental
results in Refs. 8 and 5. For regression problem, Cucker and Smale8 established the
bound (see Theorem B in Ref. 8) on the rate of the uniform empirical risks for least
square loss function by Bernstein’s inequality. They established the following basic
theorem.

Table 1. The parameters specification in Theorems 1 and 2.

Problem Loss L C0 B

Regression (f(x) − y)2 2b b2 b2

Regression |f(x) − y| 1 b b
Regression |f(x) − y|ε 1 b b
Classification (1 − yf(x))2 2b + 2 1 2b2 + 2b + 1
Classification |1 − yf(x)|+ 1 1 b + 1

Classification
ln(1+e−yf(x))

ln 2
eb

(eb+1) ln 2
1 beb

(eb+1) ln 2
+ 1
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Theorem B.8 Let H be a compact subset of C(X ). Assume that, for all f ∈
H, |f(x) − y| ≤ M almost everywhere. Then, for all ε > 0,

Probzm

{
sup
f∈H

|E(f) − Em(f)| ≥ ε

}
≤ 2N

(
H,

ε

8M

)
exp

{ −mε2

4(2σ2 + M2ε/3)

}
,

where σ2 = σ2(H) = supf∈H σ2(f2
Y ), Em(f) = 1

m

∑m
i=1(f(xi) − yi)2.

Obviously, from Table 1 in the case M = b, so for fz ∈ H, Theorem B can be
rewritten as

Probzm{E(fz) − Em(fz) ≥ ε} ≤ N
(
H,

ε

8b

)
exp

(
− mε2

4(2σ2 + 1/3b2ε)

)
.

On the other hand, we notice that inequality (3.8) in the proof of Theorem 2 can
be written as

Probzm{E(fz)−Em(fz) ≥ γ} ≤ N
(
H,

γ − 2βm

8b

)
exp

(
− m(γ − 2βm)2

4(2σ2 + 1/3b2(γ − 2βm))

)
,

where γ = 2ε+2βm. Comparing these two estimations, we can find that Theorem B
is just the special case of inequality (3.8) corresponding to βm = 0. That is, the
generalization bound derived in Ref. 8 is validated only for those learning algorithms
that are absolutely stability, in the sense that for any two different input samples
sets, the output of learning algorithms is always the same. This is clearly only
suitable for the ideal algorithm. In real applications, the size m of training samples
is finite, or small, any change of training samples inevitably lead to change of the
output of a leaning algorithm. So an absolutely stable learning algorithm hardly
exists. Instead, we can reasonably ask that a good learning algorithm should have
some kinds of uniform stability, just as done in our Theorems 1 and 2.

Based on also the uniform stability framework, Bousquet and Elisseeff5 estab-
lished the following generalization bound of a learning algorithm:

Prob{|R − Remp| ≥ 2ε + 2βm} ≤ 2 exp
{ −8mε2

(4mβm + B)2

}
, (3.12)

where R = Ez[�(A, z)], Remp = 1
m

∑m
i=1 �(A, z). Note that A here is corresponding

to fz defined in (2.3). Comparing inequality (3.12) with the inequality in Theorem 1,
we can find that the left-hand side of inequalities (3.12) and the inequality in
Theorem 1 have the same form. Thus with the same parameters ε, B, and m, when
the empirical covering number N1( ε

4 ,H, m) satisfies

ln 2N1

(
ε

4
,H, m

)
+

8mε2

(4mβm + B)2
=

mε2

8B2
, (3.13)

inequality (3.12) degenerates to the inequality in Theorem 1. This shows that the
obtained generalization bounds in Theorem 1 also contain the previously known
results in Ref. 5 as a special case. In addition, in Eq. (3.13), we have established
an interesting connection between stability and the empirical covering number of
hypothesis space H, namely, we have proved that an algorithm having a search
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space of finite empirical covering number must be uniform stable, and the uniform
stability constant βm, is bounded by the empirical covering number of the hypoth-
esis space.

4. Bounds of Regularization Error

In this section, we estimate the regularization error and provide an upper bound
estimation on the regularization error by using the K-functional tool. We first recall
some results on the K-functional.

Let LK :L2
ρx

(X ) → L2
ρx

(X ) denote the following integral transform

(LKf)(x) =
∫

K(x, t)f(t)dρx(t), ∀x ∈ X , (4.1)

where ρ(y|x) is the conditional probability measure on x induced by ρ. Such
transformation defines a Fredholm operator. It is known that when the function
K : X × X → R is a Mercer kernel and the Fredholm operator Lk is positive and
self-adjoint, there exists an orthogonal basis {φ1, φ2, . . .} of L2

ρx
(X ) consisting of

eigenfunctions of LK . If λk is the kth eigenvalue corresponding to the eigenfunction
φk, then the set {λk} is either finite or λk → 0 when k → ∞. It is known that the
set {√λkφk : λk > 0} is an orthonormal system in RKHS H.

Lemma 4.10 Suppose that the RKHS H is independent of the measure ρx. Then if
ρx is non-degenerate and dim(H) = ∞, LK has infinitely many positive eigenvalues
λk, k ≥ 1, and

H =

{
f =

∞∑
k=1

ak

√
λkφk : {ak} ⊂ �2

}
.

If dim(H) < ∞, LK has only m positive eigenvalues λk, k ≥ 1, and

H =

{
f =

p∑
k=1

ak

√
λkφk : {ak} ⊂ R

p

}
.

By Lemma 4, we can define the mapping L
1
2
K : L2

ρx
(X ) → H through

L
1
2
K

(∑
akφk

)
=

∑
ak

√
λkφk.

It is an isomorphism between the closed span of {φk : λk > 0} in L2
ρx

(X ). Thus for

any function f ∈ H, there exists some g ∈ L2
ρx

(X ) such that f = L
1
2
Kg. It is easy to

know that ‖f‖K = ‖g‖L2
ρx

(X ).

Lemma 5.8,10 Let F be a Hilbert space and A a self-adjoint, strictly positive com-
pact operator on F . Let s, r ∈ R such that s > r > 0. Then for any R > 0 and a ∈ F

min
b,s.t.‖A−sb‖≤R

‖b − a‖ ≤ R
r

r−s ‖A−ra‖ s
s−r .

By Lemmas 4 and 5, we can establish the following bound on the regularization
error of regularization algorithms.



July 11, 2011 15:47 WSPC/S0219-6913 181-IJWMIP
S0219691311004213

Generalization Bounds of Regularization Algorithms 563

Theorem 3. Suppose H is a RKHS associated with a Mercer kernel K : X ×X →
R. Let LK be defined by (4.1), and BR = {f ∈ H : ‖f‖K ≤ R} with a fixed positive
real number R. If fρ ∈ L2

ρx
(X ), then there exists f̃ ∈ BR such that the regularization

error of regularization algorithms satisfies

E(f̃) − E(fρ) + λ‖f̃‖2
K ≤ λR2 + LCrR

r
2(r−1) ,

where r ∈ (0, 1) is a constant and Cr is a constant dependent of r.

Proof. By Hölder inequality, for all f ∈ H, we have

{E(f) − E(fρ) + λ‖f‖2
K} ≤ λR2 +

∫
|�(f(x), y) − �(fρ(x), y)|dρ

≤ λR2 + L

∫
|f − fρ|dρx

≤ λR2 + L‖f − fρ‖
1
2
L2

ρx
(X ).

Applying Lemmas 4 and 5 with F = L2
ρx

(X ), s = 1, A = L
1
2
K and a = fρ, and by

using the fact that for any f ∈ H
‖L− 1

2
K f‖L2

ρx
(X ) = ‖A−1f‖L2

ρx
(X ) = ‖f‖K ,

we get that there exists f̃ ∈ BR such that

f̃ = arg min
‖f‖K≤R

‖f − fρ‖L2
ρx

(X ) = arg min
‖L

− 1
2

K f‖L2
ρx

(X)≤R

‖f − fρ‖L2
ρx

(X ),

and

‖f̃ − fρ‖L2
ρx

(X ) ≤ CrR
r

(r−1) .

So take f = f̃ and we can find

{E(f̃) − E(fρ) + λ‖f̃‖2
K} ≤ λR2 + LCrR

r
2(r−1) ,

where r is a constant and satisfies 0 < r < 1. This arrives to Theorem 3.

Remark 6. In Theorem 3, we have supposed that fρ ∈ L2
ρx

(X ), which is a nor-
mal assumption. If we further assume that fρ has more desirable property, say,
differentiable, sharper bound of the regularization error can be derived.

5. Specifications to Regularization Algorithms

Combining the bound of the samples error (Proposition 3) derived in Sec. 4 and the
bound of the regularization error (Theorem 3) established in Sec. 4, we immediately
can obtain the following bound on the generalization performance of regularization
algorithms.

Theorem 4. Assume that the regularization algorithm (2.3) is βm-uniform stable
with respect to the loss function �(f, z), the variance D[�(f, z)] ≤ σ2 for any f ∈ H
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and z ∈ Z, and the hypothesis space is a ball of a RKHS H associated with the
Mercer kernel K, whose radius is R, that is, BR = {f ∈ H : ‖f‖K ≤ R}. Then for
any δ ∈ (0, 1/2) and r ∈ (0, 1), the estimation

E(fz) − E(fρ) ≤ ε(m, δ) +
{

2 ln(1/δ)(σ2 + B2/3)
m

}1
2

+ λR2 + CrR
r

2(r−1) + 2βm

holds with confidence at least 1 − 2δ provided that

m ≥ max
{

4 ln(1/δ)(σ2 + B2/3)
B2

,
4(σ2 + B2/3)(2LRCh)

2d
h

B
2h+2d

h

}
,

where

ε(m, δ) ≤ max
{[

8 ln(1/δ)(σ2 + B2/3)
m

]1
2

,

[
8(σ2 + B2/3)(2LRCh)

2d
h

m

] h
2d+2h

}
.

Remark 7. Note that λ(m) → 0 as m → ∞. So, from Theorem 4, we can conclude

E(fz) − E(fρ) → 0, as m → ∞, and R → ∞.

This shows that the regularization algorithm (2.3) is consistent. Additionally, the
bound provided in Theorem 4 is dependent not only on the complexity of hypoth-
esis space but also on the algorithmic stability. To our knowledge, such a bound
estimation simultaneously through complexity and stability measures is the first
time to be established.

Theorem 4 can be applied to derive generalization bounds or learning rate esti-
mations of various concrete regularization algorithms. As example, in the following,
we apply Theorem 4 to derive the learning rate of regularization networks and sup-
port vector machines (SVMs), and, by the way, to formulate a new strategy to
choose the regularization parameter λ.

Example 1 (Regularization Networks). A regularization network13,14 is an
algorithm that is used to train a feedforward neural network. The algorithm has
the following form

fz = arg min
f∈BR

{
1
m

m∑
j=1

(f(xi) − yi)2 + λ‖f‖2
K

}
. (5.1)

From Table 1, in this case, if suppose Y = [0, b] and f(x) ∈ [0, b] for any x∈X
and any f ∈BR, then we have L = 2b and B = b2, and furthermore, the uniform
stability parameter βm can be bounded by Ref. 5

βm ≤ 2κ2b2

λm
,
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where κ is defined as in (2.1). Since the loss function of regularization networks
generally take the form of is the square loss, we have

fρ(x) =
∫
Y

ydρ(y|x),

which is the minimizer of the expected risk over all measurable functions. Thus by
Theorem 4 we easily obtain the following proposition.

Proposition 2. For regularization networks, if we suppose D[f(x) − y] ≤ σ2 and
f(x) ∈ [0, b] for any x ∈ X and f ∈ BR, then for any δ ∈ (0, 1/2], the estimation

E(fz) − E(fρ) ≤ ε(m, δ) +
{

2 ln(1/δ)(σ2 + b4/3)
m

}1
2

+ λR2 + CrR
r

2(r−1) + 2βm

(5.2)

holds with confidence at least 1− 2δ. In addition, from bound (5.2), we can suggest
the strategy of setting the regularization parameter λ of regularization networks as
λ := λ∗ = 2κb

R
√

m
. In this case, if, furthermore, take R = mξ with 0 < ξ < min{ h

2d , 1
2},

then the learning rate satisfies

E(fz) − E(fρ) ≤ O(m−η),

where η = min{h−2dξ
2d+2h , 1

2 − ξ, ξr
2(1−r)}.

Proof. By Theorem 4 we have that for any δ ∈ (0, 1/2], the bound on learning
rate of regularization networks obey to

E(fz) − E(fρ) ≤ ε(m, δ) +
{

2 ln(1/δ)(σ2 + b4/3)
m

}1
2

+ λR2

+ CrR
r

2(r−1) + 2βm (5.3)

which holds with confidence at least 1 − 2δ as long as

m ≥ max

{
4 ln(1/δ)(σ2 + b4/3)

b4
,
4(σ2 + b4/3)(4bRCh)

2d
h

(b)
4(h+d)

h

}
.

Here

ε(m, δ) ≤ max

{ [
8 ln(1/δ)(σ2 + b4/3)

m

]1
2

,

[
8(σ2 + b4/3)(4bRCh)

2d
h

m

] h
2d+2h

}
.

For simplicity, let us denote the right-hand side of inequality (5.3) by ∆1(m, R).

Therefore, for any regularization parameter λ in (5.1), whenever βm = 2κ2b2

λm , we
have

∆1(m, R) = ε(m, δ) +
{

2 ln(1/δ)(σ2 + b4/3)
m

}1
2

+
4κ2b2

λm
+ λR2 + CrR

r
2(r−1) .
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Because

4κ2b2

λm
+ λR2 ≥ 2

√
4κ2b2R2

m
=

4κbR√
m

, (5.4)

we have

∆∗
1(m, R) := ε(m, δ) +

{
2 ln(1/δ)(σ2 + b4/3)

m

}1
2

+
4κb√

m
+ CrR

r
2(r−1) ,

where the equality (5.4) holds if and only if λ = λ∗ = 2κb
R
√

m
. Then we can find that

lim
R→∞

lim
m→∞∆∗

1(m, R) = 0.

In addition, if we take R = mξ, 0 < ξ < min{ h
2d , 1

2}, then

∆∗
1(m, R) = O(m−η),

where η = min{h−2dξ
2d+2h , 1

2 − ξ, ξr
2(1−r)}. This implies Proposition 5.

Example 2 (SVMs). According to Ref. 23, SVMs are the regularization algo-
rithms defined by

fz = arg min
f∈BR

{
1
m

m∑
j=1

|1 − yif(xi)|+ + λ‖f‖2
K

}
,

where |1 − yf(x)|+ = max{1 − yf(x), 0}. By Remark 4, if we suppose D[|f(x) −
y|+] ≤ σ2, f(x) ∈ [0, b] for any x ∈ X and any f ∈BR, and take Y = [0, b], and then
L = 1 and B = b + 1. So the uniform stability parameter βm can be bounded by
Ref. 5

βm ≤ κ2

2λm
.

Since the loss function of SVMs is the hinge loss, the function that minimizes the
expected risk is given by Refs. 11 and 26

fρ(x) = sgn
(∫

Y
ydρ(y|x)

)
= sgn(Prob(y = 1|x) − Prob(y = −1|x)),

where ρ(y|x) is the conditional probability of x induced by ρ, so when applied to
SVMs, Theorem 4 immediately implies the following proposition.

Proposition 3. For SVMs, if we suppose D[|1 − yf(x)|+] ≤ σ2 and f(x) ∈ [0, b]
for all x ∈ X and f ∈BR, then, for any δ ∈ (0, 1/2], the estimation

E(fz) − E(fρ) ≤ ε(m, δ) +
{

2 ln(1/δ)(σ2 + (1 + b)4/3)
m

}1
2

+ λR2

+ CrR
r

2(r−1) + 2βm (5.5)

holds with confidence at least 1−2δ. In addition, by the bound (5.5), we can suggest
the strategy of setting the regularization parameter of SVMs as λ := λ∗ = κ

R
√

m
. In

this case, if, furthermore, take R = mξ with where 0 < ξ < min{ h
2d , 1

2}, then the
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learning rate satisfies

E(fz) − E(fρ) ≤ O(m−η),

where η = min{h−2dξ
2d+2h , 1

2 − ξ, ξr
2(1−r)}.

Remark 8. As it is known, the regularization algorithms can be formulated
either as

min
f∈H

1
m

m∑
i=1

�(f(xi), yi) + λ‖f‖2
K , (5.6)

or as

min
f∈H

1
m

m∑
i=1

�(f(xi), yi) s.t. ‖f‖2
K ≤ R, (5.7)

where the expression (5.6) is the so-called Lagrange form of the expression (5.7).
The equivalence of these two formulations comes from the fact that for any R, there
exists a regularization parameter λ such that the solution of the two problems are
the same. In SVMs, Vapnik applied the SRM principle23 to tackle the problem of
how to choose the regularization parameter λ for any R. The SRM principle con-
sists in solving the second problem for a series of values of R and then choosing the
value that minimizes a generalization bound that depends on the VC-dimension of
the set {f : ‖f‖K ≤ R}. The VC-dimension is, however, not easy to compute and
so only loose upper bounds can be found. In the present work, from another point
of view, we have estimated the upper bounds of the sample error and regulariza-
tion error, and then suggested the strategies for controlling the tradeoff between
the sample error and regularization error. In fact, when the parameter R → +∞,
the expression (5.7) becomes the unconstrained optimization problem, so the reg-
ularization parameter λ must tend to 0. Interestingly, our strategies suggested by
Propositions 2 and 3 (namely λ = 2κb

R
√

m
in Proposition 2 and λ = κ

R
√

m
in Propo-

sition 3) exactly possess such property. This shows the rationality of the suggested
parameter setting strategies, and, furthermore, the significance of Propositions 2
and 3 is highlighted.

In Propositions 2 and 3, we have derived the generalization bound of SVMs and
regularization networks simultaneously through the space complexity and algorith-
mic stability. Comparing Proposition 4.1 in Ref. 25 with Proposition 2 obtained in
this paper, we can find that we all studied the learning performance of the regu-
larization networks and obtained the leaning rate of the regularization networks,
but the difference of research approaches are obvious, above all strategies of the
regularization parameter setting are different. In the Propositions 4.1 of Ref. 25,
in order to obtain the generalization bounds of regularization networks, authors
manually took the regularization parameter λ = m−1/(1+β)(1+s), and then used
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this proposition to explain the learning rate of the regularization networks is less
than 1/2, that is

E(fz) − E(fρ) ≤ O(m−η′
),

where 0 < η′ ≤ 1/2. Obviously, by (5.6) and (5.7) we know our approach that choose
the parameters by minimizing the obtained generalization bound is more valuable.
Because it conforms to reality better than the manually taking the regularization
parameter (regularization parameter is not related to the parameter R does not
conform to reality).

Finally, we would like to remark that the analysis method adopted in this paper
has an additional advantage that it can be conveniently used to yield practical
strategies of setting the regularization parameters, just as demonstrated in Propo-
sitions 2 and 3. The previous approaches obviously have no such advantage.

6. Conclusion

The existing approaches for estimating the generalization performance of a learning
algorithm are in terms of unitary measure on hypothesis complexity or algorith-
mic stability. It is our point of view that the performance of a learning algorithm
is affected by no means with an unitary factor like hypothesis space complexity,
algorithmic stability, data quality and sampling mechanism, but actually with the
combinative effect of all the unitary factors. Based on this viewpoint, we have pro-
posed to bound the generalization performance of regularization learning algorithms
simultaneously in terms of the hypothesis space complexity, algorithmic stability
and data quality. The obtained generalization bound estimations sharpen or gener-
alize those derived from the traditional approaches based on using unitary measure.
We have shown that the new approach has an additional advantage that it can be
conveniently used to yield practical strategies of setting the regularization parame-
ters (say choose the parameters by minimizing the obtained generalization bound).
The obtained generic results have been specialized to two typical regularization
algorithms: the regularization networks and support vector machines, showing the
significance and usefulness of the new approach.

There are many problems that deserve further research along the line of the
present work. For example, to find an efficient way of estimating the empirical cover-
ing number involved in Theorem 1, to answer what type of algorithmic stability that
is essential for bounding the generalization performance of a learning algorithm, to
systematically compare the performance of the regularization networks and support
vector machines with the suggested regularization parameter setting strategies and
the other known strategies. All those problems are under our current research.
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